1. Questo sito utilizza i cookies. Continuando a navigare tra queste pagine acconsenti implicitamente all'uso dei cookies. Scopri di più.

distanza tra due rette

Discussione in 'Matematica' iniziata da corey88, 5 Novembre 2010.

  1. corey88

    corey88 Primino Utente

    Messaggi:
    13
    "Mi Piace" ricevuti:
    0
    Punteggio:
    2
    Ciao,
    Ho capito come si calcola la distanza di una retta da un punto o tra due punti, ma non mi è chiaro come si calcola la distanza tra due rette parallele date dalle equazioni: y=2x-2 e y=2x+3.
    Ho provato a trovare la x e la y con un sistema, ma la x mi si annulla (2x-2x).
    C'è qualcuno che mi aiuta dandomi almeno un'inizio di risoluzione. Grazie.
    E' urgente.
    :confused:
     
  2. StudentVille Sponsorizzato

  3. franceinstein

    franceinstein Primino Utente

    Messaggi:
    350
    "Mi Piace" ricevuti:
    0
    Punteggio:
    17
    dato che le due rette sono parallele puoi trovare un punto per cui passa una delle due rette
    per esempio la prima per x=0 si ha che: y=-2.
    Quindi la prima retta passa per il punto p(0; -2) e ora applichiamo la formula della distanza retta-punto:
    $$d= \frac{ax+by+c}{\sqrt{a^2+b^2}}= \frac{2 \cdot 0+ (-2)(-1)+3}{\sqrt{0^2+(-2)^2}}= \frac{5}{2}$$
    spero di essere stato utile...ciao
     
  4. corey88

    corey88 Primino Utente

    Messaggi:
    13
    "Mi Piace" ricevuti:
    0
    Punteggio:
    2
    Ti ringrazio dell'input Franceinstein, ora vado a risolverlo e vedi cosa risulta.
    Ancora grazie e ciao.
    :):)
     

Condividi questa Pagina